Diffraction at CDF and Universality of Diffractive Factorization Breaking Low x 2010, 23-27 June 2010 Kavala (Greece) Konstantin Goulianos The Rockefeller University http://physics.rockefeller.edu/dino/my.html/

CONTENTS

□ Introduction

- Diffraction at CDF: latest results
 - > Dijets
 - \succ W and Z
 - ➢ Jet-Gap-Jet

Universality of Diffractive Factorization Breaking

INTERACTIONS

Diffractive: Non-diffractive: Color-exchange Colorless exchange carrying vacuum quantum numbers rapidity gap Incident hadrons Incident hadrons retain acquire color their quantum numbers and break apart remaining colorless pseudo-CONFINEMENT DECONFINEMENT M E

<u>Goal</u>: understand the QCD nature of the diffractive exchange

low-x 27-29 June 2010 Kavala

Diffraction at CDF and Universality of DFB

K. Goulianos 4

Diffractive pp(pp) processes @ CDF

use gap nesting until no diffractive gap fits in $\sqrt{s'}$

M² scaling → $d\sigma/dM^2|_{t=-0.05}$ independent of s over 6 orders of magnitude!

\rightarrow factorization breaks down to ensure M² scaling - why?

REMARKS

❑ MC generators for diffractive studies:

→ PYTHIA & PHOJET disagree with each other and with data.

Diffractive factorization breaking at HERA: <u>Vector mesons:</u> σ vs. W, b-slopes of t-distributions, ... <u>Dijets:</u> E_T^{jet} dependence, resolved vs. direct components, ...

Renormalization (RENORM) model: describes both p (\overline{p}) - p and \gamma (\gamma*) – p

→ MC based on RENORM model:

MBR (Minimum Bias Rockefeller) used at CDF.

□ Luminosity measurement: requires a known x-section and MC predicted acceptance of a detector component.

➔ suggest SD: well defined and slowly varying x-section

The CDF II Detector

Diffractive Structure Function breakdown of QCD factorization !

Diffractive Structure Function

low-x 27-29 June 2010 Kavala

Diffraction at CDF and Universality of DFB

K. Goulianos 11

Dijet E_T distributions

→ similar for SD and ND over 4 orders of magnitude

Kinematics

low-x 27-29 June 2010 Kavala

- The x_{Bj}-distribution of the SD/ND ratio has no strong Q² dependence
- the slope of the t-distribution is independent of Q²
- the t-distribution ?????? diffraction minimum ??????

$\xi \& \beta dependence of F^{D}_{jj} - Run I$

Diffractive W/Z - analysis

Diffractive W/Z - results

Table 1: W and Z events passing successive selection requirements.

	$W \rightarrow e \nu$	$W \to \mu \nu$	$W \to l(e/\mu)\nu$
RPS-trigger-counters	6663	5657	12 320
RPS-track	5124	4201	9325
$50 < M_W < 120$	192	160	352
	$Z \rightarrow ee$	$Z \to \mu \mu$	$Z \rightarrow ll$
RPS-trigger-counters	650	341	991
RPS-track	494	253	747
$\xi^{\rm cal} < 0.10$	24	12	36

$$R_W(R_Z) = \frac{2 \cdot N_{SD}^W(N_{SD}^Z)}{R_{RPS} \cdot \epsilon_{\text{RPStrig}} \cdot \epsilon_{\text{RPStrk}} \cdot N_{ND}^{1-\text{int}}}$$

$$R_{\rm W} = [0.97 \pm 0.05 \,(\text{stat.}) \pm 0.10 (\,\text{syst.})]\%$$

 $R_{\rm Z} = [0.85 \pm 0.20 (\text{ stat.}) \pm 0.08 (\text{ syst.})]\%$

CENTRAL GAPS

Gap Fraction in events with a CCAL gap

The distribution of the gap fraction $R_{gap} = N_{gap}/N_{all}$ vs $\Delta \eta$ for MinBias $(CLC_p \circ CLC_{pbar})$ and MiniPlug jet events $(MP_p \circ MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. The distributions are similar in shape within the uncertainties.

DIFFRACTION PHENOMENOLOGY

Single Diffraction

Gap probability MUST be normalized to unity!

Single diffraction (re)normalized

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = N_{gap} \cdot \underbrace{C \cdot F_{p}^{2}(t) \cdot \left\{e^{(\varepsilon + \alpha' t)\Delta y}\right\}^{2}}_{P_{gap}(\Delta y, t)} \cdot \kappa \cdot \left\{\sigma_{o} \ e^{\varepsilon \Delta y'}\right\}$$

$$N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) \ d\Delta y \ dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}$$

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = C'' \left[e^{\varepsilon(\Delta y - \ln s)} \cdot \ln s\right] e^{(b_{0} + 2\alpha'\Delta y)t}$$
Grows slower than s^{ε}

$$\Rightarrow \text{ Pumplin bound obeyed at all impact parameters}$$

Unitarity and Renormalization

Pomeron flux \rightarrow gap probability Set to unity – determines g_{PPP} and s₀ KG, PLB 358 (1995) 379

Pomeron-proton x-section

Dijets in yp at HERA from RENORM

Multi-gap Diffraction

(KG, hep-ph/0205141)

Multi-gap Cross Sections

Rapidity Gaps in Fireworks

low-x 27-29 June 2010 Kavala

All Martine article of

"Gap survival probability"

Hard Diffraction Phenomenology

Diffractive dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

F^D_{JJ}(ξ,β,Q²) @ Tevatron

SD/ND dijet ratio vs. x_{Bj}@ CDF

0.035 < ξ < 0.095

Flat ξ dependence for $\beta < 0.5$

$$R(x) = x^{-0.45}$$

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Results favor color reorganization

low-x 27-29 June 2010 Kavala Diffraction at CDF and Universality of DFB

Dijets in yp at HERA - 2008

■ 20-50 % apparent rise when $E_T^{jet} 5 \rightarrow 10 \text{ GeV}$ → due to suppression at low $E_T^{jet} !!!$

Vector meson production

low-x 27-29 June 2010 Kavala Diffraction at CDF and Universality of DFB

Dijets in γp at HERA – 2007 **Direct vs. resolved** Dijets in yp Frixione NLO code H1 Diffractive Dijet Photoproduction + hadronizarion correction H1 2006 Fit B DPDF H1 Data FR NLO×(1+δ_{had}) ▲ correlated uncertainty — FR NLO 1000 do/dx^{jets} (pb) 22. direct H1 b) a) H1 Hadron-like 800 resolved 600 500 400

□ the reorganization diagram predicts:
 → suppression at low Z_{IP}^{jets}, since larger Δη is available for particles
 → same suppression for direct and resolved processes

0.6

0.8

xjets

250

0.2

0.4

dσ/dziets (pb)

200

0.2

0.4

0.6

0.8

Ziets

reorganize

Pomeron α'/ϵ and σ_t in a QCD inspired parton model approach

σ^{SD} and ratio of α'/ϵ

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

$$\frac{d^{2}\sigma_{\rm sd}(s,M^{2},t)}{dM^{2}dt} = \left[\frac{\sigma_{\circ}}{16\pi}\sigma_{\circ}^{\rm pp}\right]\frac{s^{2\epsilon}}{N(s)}\frac{1}{(M^{2})^{1+\epsilon}}e^{bt}$$

$$\stackrel{s\to\infty}{\Rightarrow} \left[2\alpha' e^{(\epsilon b_{0})/\alpha'}\sigma_{\circ}^{\rm pp}\right]\frac{\ln s^{2\epsilon}}{(M^{2})^{1+\epsilon}}e^{bt}$$

$$\sigma_{\rm pp/\bar{p}p}^{\rm tot} = \sigma_{\circ} \cdot e^{\epsilon\Delta\eta}.$$

$$\sigma_{\rm sd}^{\rm sd} = 2\sigma_{\circ}^{\rm pp}\exp\left[\frac{\epsilon b_{\circ}}{2\alpha'}\right] = \sigma_{\circ}^{\rm pp}$$

$$\sigma_{\circ}^{\rm sd} = 2\sigma_{\circ}^{\rm pp}\exp\left[\frac{\epsilon b_{\circ}}{2\alpha'}\right] = \sigma_{\circ}^{\rm pp}$$

$$r = \frac{\alpha'}{\epsilon} = -\left[16m_{\pi}^{2}\ln(2\kappa)\right]^{-1}$$

$$r_{\rm pheno} = 3.2 \pm 0.4 \ ({\rm GeV}/c)^{-2}$$

$$r_{\rm exp} = 0.25 \ ({\rm GeV}/c)^{-2}/0.08 = 3.13 \ ({\rm GeV}/c)^{-2}$$

£

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s}_F = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800$ GeV.
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800$ GeV are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)$

low-x 27-29 June 2010 Kavala

Diffraction at CDF and Universality of DFB

 $\sigma_{14\,000\,\text{GeV}}^{LHC} = (80 \pm 3) + (29 \pm 12) = 109 \pm 12 \text{ mb}$

Monte Carlo Strategy for the LHC

σ

optical theorem

dispersion relations

MONTE CARLO STRATEGY

- $\Box \sigma^{\mathsf{T}} \rightarrow \text{from SUPERBALL model}$
- □ optical theorem \rightarrow Im f_{el}(t=0)
- □ dispersion relations \rightarrow Re f_{el}(t=0) $\lim_{x \to 0} f_{el}(t=0)$
- □ differential $\sigma^{SD} \rightarrow$ from RENORM \downarrow dispersion of the states for Ref_{el}(t=0)
- □ use *nested* pp final states for

pp collisions at the IP - p sub-energy \sqrt{s}

See K. Goulianos, Phys. Lett. B 193 (1987) 151 pp "A new statistical description of hardonic and e+e- multiplicity distributions "

CONCUSION stay tuned

The first CMS event

low-x 27-29 June 2010 Kavala